Symbolic Representations of Iterated Maps
نویسندگان
چکیده
This paper presents a general and systematic discussion of various symbolic representations of iterated maps through subshifts. We give a unified model for all continuous maps on a metric space, by representing a map through a general subshift over usually an uncountable alphabet. It is shown that at most the second order representation is enough for a continuous map. In particular, it is shown that the dynamics of one-dimensional continuous maps to a great extent can be transformed to the study of subshift structure of a general symbolic dynamics system. By introducing distillations, partial representations of some general continuous maps are obtained. Finally, partitions and representations of a class of discontinuous maps, piecewise continuous maps are discussed, and as examples, a representation of the Gauss map via a full shift over a countable alphabet and representations of interval exchange transformations as subshifts of infinite type are given.
منابع مشابه
Symbolic Representations of Iterated Maps November 14 , 2000
This paper presents a general and systematic discussion of various symbolic representations of iterated maps through subshifts. We give a unified model for all continuous maps on a metric space, by representing a map through a general subshift over usually an uncountable alphabet. It is shown that at most the second order representation is enough for a continuous map. In particular, it is shown...
متن کاملIteration of Differentiable Functions under m-Modal Maps with Aperiodic Kneading Sequences
We consider the dynamical system A, T , whereA is a class of differentiable functions defined on some interval and T :A → A is the operator Tφ : f ◦φ, where f is a differentiablem-modal map. Using an algorithm, we obtained some numerical and symbolic results related to the frequencies of occurrence of critical values of the iterated functions when the kneading sequences of f are aperiodic. More...
متن کاملUse of operator algebras in the analysis of measures from wavelets and iterated function systems
In this paper, we show how a class of operators used in the analysis of measures from wavelets and iterated function systems may be understood from a special family of representations of Cuntz algebras. Let (X, d) be a compact metric space, and let an iterated function system (IFS) be given on X, i.e., a finite set of continuous maps σi: X → X, i = 0, 1, · · · , N −1. The maps σi transform the ...
متن کاملComputing the Topological Entropy of Multimodal Maps via Min-Max Sequences
We derive an algorithm to recursively determine the lap number (minimal number of monotonicity segments) of the iterates of twice differentiable l-modal map, enabling to numerically calculate the topological entropy of these maps. The algorithm is obtained by the min-max sequences—symbolic sequences that encode qualitative information about all the local extrema of iterated maps.
متن کامل1 1 Fe b 20 04 Iterated function systems , representations , and Hilbert space
In this paper, we are concerned with spectral-theoretic features of general iterated function systems (IFS). Such systems arise from the study of iteration limits of a finite family of maps τi, i = 1, . . . , N , in some Hausdorff space Y . There is a standard construction which generally allows us to reduce to the case of a compact invariant subset X ⊂ Y . Typically, some kind of contractivity...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2000